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Abstract—Affective disorders belong to a group of psychi-
atric disorders that are diagnosed according to the criteria
of standardized diagnostic manuals. The diagnostic protocol
consists of assessing a patient’s symptoms, but to date,
there are no methods to objectively evaluate or measure
them. Electroencephalography (EEG) is a non-invasive brain
electrical activity measuring technique. Current research
mainly focuses on the use of EEG data and feature extraction,
machine learning (ML), and deep learning (DL) to classify
affective disorders. In this paper, the focus is on measuring
the impact of preprocessing EEG signals on ML models
for affective disorders. The impact of the following prepro-
cessing methods is evaluated: signal filtering, independent
component analysis (ICA), and canonical correlation analysis
(CCA). The methods are assessed on a dataset consisting
of EEG signals from 70 subjects diagnosed with affective
disorders and 35 healthy subjects. After preprocessing, 570
features are extracted for each subject and several ML
models are used for classification. CCA provided the best
results compared to the other methods, with the highest F1
score of 0.9756 achieved with the decision tree classifier. CCA
should be considered as a beneficial preprocessing method
to potentially improve classification results when building
complex models for EEG data.

Keywords—electroencephalography, canonical correlation
analysis, independent component analysis, preprocessing, af-
fective disorders Hokdoitujkl

I. INTRODUCTION

Affective disorders belong to a group of psychiatric
disorders characterized by problems in mood regulation
[1]. They are diagnosed according to the criteria of
standardized diagnostic manuals [1], [2]. The diagnos-
tic protocol consists of assessing a patient’s symptoms
through interviews with the patient and using various
psychometric tests such as Beck Depression Inventory
(BDI) [3] and Hamilton Depression Rating Scale (HAM-
D) [4]. Although tests and interviews provide valuable
information about the patient’s state, to date, there are no
methods that objectively evaluate or measure a patient’s
symptoms of an affective disorder.

Electroencephalography (EEG) is a non-invasive brain
electrical activity measuring technique. In the process
of diagnosing affective disorders, the EEG is inspected
visually in order to rule out brain damage or epileptogenic
activity. However, EEGs contain more information that
is not accessible by visual inspection of the signal but
requires feature extraction with signal processing methods
[5]. Current research mainly focuses on the use of EEG

data and feature extraction, statistical analysis, machine
learning (ML), and deep learning (DL) to classify affec-
tive disorders [6]–[8]. The main hypothesis is that EEG
characteristics could serve as biomarkers of affective dis-
orders, and identifying them could serve as a step towards
understanding the underlying mechanisms of dysfunction
[9].

During the recording of an EEG, various artifacts occur
that must be removed in order to enable further analysis of
the signal. The most common artifacts include eye move-
ment, muscle and heart artifacts, line noise, and others
caused by the recording equipment or by the subject’s
movement [10]. There are several common preprocessing
steps used for EEG signals like filtering, re-referencing,
segmenting signals into epochs, removing or interpolating
bad channels, and artifact removal with various methods
like independent component analysis (ICA) or canonical
correlation analysis (CCA) [11]. Applying some of the
steps is inevitable due to numerous artifacts that make
EEGs not accurately represent signals from the brain. In
this paper, the goal is to measure the impact of different
preprocessing methods for EEG signals on ML models for
affective disorders. Using the optimal preprocessing steps
enables ML algorithms to work with a more accurate rep-
resentation of EEG signals and more successfully discover
patterns in data.

The impact of the following preprocessing methods
is evaluated in this work: signal filtering, independent
component analysis, and canonical correlation analysis.
Filtering and ICA are chosen because they are the most
commonly used methods [12], while CCA is chosen as a
novel method, not commonly used, but potentially better
than ICA at removing some types of artifacts. Research
related to ICA focuses on finding optimal hyperparameters
for using ICA [13], or combining ICA with other methods
to create the best possible preprocessing pipeline [14].
Even though ICA is the most commonly used method,
some papers report that CCA is better at removing specific
types of artifacts. In Roy and Shukla [15], CCA proved
to be better at removing motion artifacts. When removing
eye blinks, CCA was more accurate and faster than ICA
[16], as well as when the task was removing muscle
artifacts [17], [18]. Most of these papers use simulated
signals or a dataset created specifically for the purpose
of experimenting with preprocessing methods. This paper
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researches chosen methods on a real-life dataset where
the impact of each method is measured through metrics
of ML models on a classifying task instead of signal-to-
noise ratio (SNR). The motivation behind this research
is to find the most effective preprocessing methods that
would potentially improve the classification accuracy of
affective disorders ML models that use EEG features.

The remainder of this paper is organized as follows.
Section II gives an insight into the process of data acqui-
sition and a detailed description of the dataset. Section III
describes the applied methods, while Section IV displays
the experimental setup used in research. Section V shows
the classification results and compares the inspected pre-
processing methods. Finally, all results are discussed and
a conclusion is given in Section VI.

II. DATA ACQUISITION AND DESCRIPTION

The EEG dataset was obtained at the University Psychi-
atric Hospital Vrapce, Zagreb. The dataset contains EEG
recordings of 105 subjects, of whom 70 are diagnosed
with affective disorder according to ICD-10 [1] and 35
are healthy control subjects. The subjects are age and sex-
matched in the ratio 2:1, meaning that for every healthy
subject, there are two subjects with depression diagnoses
of the same sex and similar or same age. For machine
learning purposes, the dataset is divided into a training set
(75 subjects) and a testing set (30 subjects), as shown in
Table I.

TABLE I: Diagnosis and sex of subjects

Diagnosis Training Set Testing Set
Female Male Female Male

Affective Disorder (F32) 6 9 1 0
Affective Disorder (F33) 22 13 8 11

Healthy 14 11 4 6

During the recording protocol, the subject was in a
relaxed laying position to minimize artifacts created by
subject movement. The recording protocol consisted of
three parts: rest-state with eyes opened and closed (dura-
tion: 5-10 minutes), photo-stimulation with five different
flash frequencies - 4 Hz, 8 Hz, 16 Hz, 24 Hz and 30 Hz
(duration: 15 seconds for each frequency) and an induced
state of hyperventilation (duration: 5 minutes). During the
recording, a technician marked the onset of each event.
For each subject, EEG was recorded using a 19-channel
EEG amplifier with standard 10-20 electrode placement,
as shown in Fig 1. The EEG electrodes included Fp1, Fp2,
F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4,
T6, O1 and O2, with Oz as the reference electrode. The
sampling frequency was 256 Hz.

The dataset acquisition was carried out in accordance
with the guidelines of the Declaration of Helsinki and
approved by the ethics committee of the University of
Zagreb, University Psychiatric Hospital Vrapce.

III. METHODS

A key step in EEG signal analysis is signal prepro-
cessing. During the recording of EEG signals, it is not

Fig. 1: 10-20 system of electrode placement with 19
electrodes [19]

possible to avoid recording artifacts caused by line noise
at 50 Hz and its harmonics, as well as the artifacts caused
by movement of the subject, electrodes or wires, muscle
artifacts, and eye movement artifacts. The goal during
preprocessing is to use methods that will preserve the EEG
signal whose amplitude is around 10 µV, while removing
the artifacts that have an amplitude of a higher order of
magnitude - a few mV. Three preprocessing steps will be
explored in this paper: filtering, ICA, and CCA.

A. Filtering

The raw EEG signal is first filtered with a passband
finite impulse response (FIR) filter from 0.1 to 40 Hz
implemented using the MATLAB function filfilt() with
Hamming window and default filter order defined by
EEGLAB. The low-frequency edge is chosen to eliminate
the slow drifts in the signal while the high-frequency
edge is chosen to remove the 50 Hz line noise and at
the same time retain the frequency components of interest
[20]. After filtering, the channels are re-referenced to the
average value of all 19 channels.

B. Canonical correlation analysis

Canonical correlation analysis, CCA, is a way of mea-
suring the linear relationship between two multidimen-
sional variables. The method finds two bases, one for each
variable, that are optimal with respect to correlations and,
at the same time, finds the corresponding correlations [21].
For EEG signal preprocessing, CCA is used as a blind
source separation method (BSS), where the goal is to
force sources to be maximally autocorrelated and mutually
uncorrelated [22].

Let the observed EEG signals be X(t) =
[x1(t),x2(t), ...,xM(t)]T , t = 1, 2, ..., N where N
is the number of samples and M is the number of
EEG electrodes. BSS is performed to recover sources
S(t) = [s1(t), s2(t), ..., sM (t)]T by observing X(t) as a
mixture of a set of unknown source signals in a linear
combination

X(t) = A · S(t), (1)



where A is the unknown mixing matrix. The unknown
source signals S(t) are derived by introducing the demix-
ing matrix W,

S̃(t) = WX(t), (2)

where S̃(t) approximates the unknown source signals
in S(t), and ideally, W is the inverse of the unknown
mixing matrix A. In practice, a temporal CCA analysis is
used where the two variables are: observed EEG signals
X(t), and a delayed version of the observed EEG signals
Y(t) such that Y(t) = X(t − 1) [23]. Suppose two
canonical variables, U and V , are linear combinations of
the components in X and Y,

U(t) = wT
x X(t),

V (t) = wT
y Y(t).

(3)

CCA is used to find the matrices wx = [wx1 ...wxM
]

and wy = [wy1
...wyM

] that maximize the correlation ρ
between U and V ; the following problem has to be solved:

max
wX,wY

ρ(U, V ) =
wT

x Cxywy√
(wT

x Cxxwx)(wT
y Cyywy)

, (4)

where Cxx and Cyy are the autocovariance matrices of X
and Y, and Cxy = CT

xy are the cross-covariance matrices
of X and Y. After some manipulations, the demixing
matrices wx and wy can be calculated by solving the
following eigen-value problem:

Cxx
−1CxyCyy

−1Cyxwx = ρ2wx,

Cyy
−1CyxCxx

−1Cxywy = ρ2wy.
(5)

After calculating the demixing matrix W, the next step
is getting the approximate source signals S̃(t) sorted by
the autocorrelation coefficient. To remove muscle activity,
CCA uses the fact that the autocorrelation of muscle
activity and other artifacts is weaker than that of brain
activity [24].

C. Independent Component Analysis

Independent component analysis, ICA, is a method for
automatically identifying the underlying factors in a given
dataset. Moreover, it is essentially a method for extracting
individual signals from a mixture of signals thus making it
a good tool for removing artifacts from EEG signals as a
BSS method [25]. The goal of using ICA for preprocessing
EEG signals is to find individual components of the signal
produced by specific brain regions. A critical problem is
that the method must have an equal number of mixtures
to the number of sources in the signal.

Let the EEG signal coming from one electrode be xi =
[x1

i , x
2
i , ..., x

N
i ]T where N represents the number of inde-

pendent source signals. Each mixture xi contains a contri-
bution from each source signal sj = [s1j , s

2
j , ..., s

N
j ]T . The

relation between each source sj and xi can be defined with
a weighting factor Aij for each source. If N = 2 then the
relative contribution of each source sj to a mixture xi is

xi = (s1A1i) + (s2A2i) = sA.i. (6)

If there are M = 2 electrodes, then each source has
a different relative amplitude defined by Aij at each
electrode, so that each electrode records a different mixture
xi

(x1, x2) = (sA.1)(sA.2) = s(A.1, A.2) = sA, (7)

where each column of the mixing matrix A specifies
the relative contributions of the source signals s to each
mixture xi. Matrix A defines a linear transformation on the
signals s which can usually be reversed to get an estimate
u of source signals s from signal mixtures x

s ≈ u = xW, (8)

where the separating matrix W = A−1 is the inverse of
A. The mixing matrix A is unknown, therefore it cannot
be used to find the separating matrix W which maps
a set of M mixtures x to a set of N source signals
u ≈ s. To find an estimation u = xW , so that the
source signals s are mutually independent, the estimation
of source signals u must also be mutually independent.
This can be achieved by adjusting W to maximize the
entropy of U = g(u) = g(Wx), where the function g is
assumed to be the cumulative density function (CDF) of
s.

To identify and remove independent components from
EEG signals that are artifacts, a tool called ICLabel is used
[26]. ICLabel is a classifier that computes independent
component class probability across seven possible classes:
brain, muscle, eye, heart, line noise, channel noise, and
others. Independent components classified as anything but
the brain above a certain threshold of probability can be
removed to clean the dataset from artifacts.

IV. EXPERIMENTAL SETUP

For evaluating the preprocessing methods, the following
pipeline is used:

1) Data acquisition
2) Preprocessing
3) Feature extraction
4) Classification with ML models

Three classification experiments are conducted, where the
only difference is in the second step: preprocessing. In
the first experiment, signals are only filtered and re-
referenced. For the second experiment, the signals are
filtered and re-referenced, and CCA is applied. After CCA,
two canonical components are removed from the signal:
the first component which represents eye movement, and
the last component which represents muscle artifacts. For
the third experiment, the signals are also filtered and re-
referenced, and ICA is applied together with ICLabel.
Independent components labeled as artifacts with certainty
above 75% are removed from the EEG signals.

After preprocessing, for each of the five characteristic
brain rhythms recognizable in EEGs (delta, theta, alpha,
beta, and gamma), six features are extracted:

• absolute band power,



• relative band power,
• spectral centroids,
• relative wavelet energy,
• wavelet entropy,
• Katz fractal dimension.

Although there are many EEG features available in the
literature [5], the features were chosen as the most promis-
ing ones in the research on EEG biomarkers for affective
disorders and were already used in an earlier paper where
a more detailed description of each feature is given [27].
Feature extraction was upgraded in comparison to [27]
by adding Katz fractal dimension, a feature that measures
the non-linear characteristics of the EEG signal [28].
All features are extracted using MATLAB. Features are
extracted only from the first part of the recording protocol
- the resting state, where the subject lies still with eyes
open and closed. For each subject, six different feature
types are extracted, for five characteristic brain rhythms,
for all 19 EEG channels, totaling 570 unique features per
subject.

After feature extraction, different machine learning
models are evaluated in the Classification Learner ap-
plication in MATLAB [29]. The input data are the fea-
tures table and the output is two classes: depressed or
healthy. The models are trained with a training dataset
(75 subjects) using 10-fold cross-validation. After training,
the models are further tested on the testing dataset (30
subjects) and evaluated using four metrics: accuracy (Acc),
precision (Pr), recall (Re), and F1-score (F1) [30]. Eight
machine learning models are compared: decision tree,
linear discriminant (LD), logistic regression (LR), naive
Bayes (NB), support vector machine (SVM), K-nearest
neighbours (KNN), ensemble (RUSBoosted trees) and
kernel SVM for three classification experiments.

V. RESULTS

First, EEG recordings of each subject were loaded into
EEGLAB in MATLAB for the preprocessing steps. Fig. 2
shows 5 seconds of EEG signals from subject 4011 after
each preprocessing step. Every EEG recording consists of
19 channels and a reference channel which are stacked to
visualise artifacts better.

The depicted signal contains several common EEG
artifacts: line noise, blinks at the 28th, 30th, and 32nd

seconds, and drifts. Figure 2a) shows a raw signal where
no preprocessing methods have been used. Figure 2b)
shows the EEG signal filtered with the FIR filter and re-
referenced to the average reference. The scale of the signal
has changed and the line noise at 50 Hz is successfully
removed. Figure 2c) shows the effects of applying CCA
and removing components containing artifacts on EEG
signals. Figure 2d) shows the effects of applying ICA
and removing components labeled by ICLabel. While
ICA managed to remove blinks from the signal, the drift
remained, while CCA was successful in removing both
blinks and drift.

Fig. 2: A representative example for the effects of
preprocessing methods on EEG signal – subject 4011

After preprocessing, signals are decomposed into five
characteristic brain rhythms and features are extracted.
Once all the features are extracted, machine learning
models are trained with 10-fold cross-validation and tested
with a testing set. Classification results on the testing
dataset for classes depressed and healthy are shown in
Table II. All 570 features are used for each subject. Over-
all, the decision tree and kernel SVM show the highest



classification accuracy in the third experiment where CCA
was used as a preprocessing method.

TABLE II: Classification results

Experiment Model Acc Pr Re F1

1) Filter

Tree 0.5333 0.4500 0.7500 0.5625
LD 0.5333 0.5000 0.7143 0.5882
LR 0.6667 0.8000 0.7273 0.7619
NB 0.7667 0.9500 0.7600 0.8444
SVM 0.7333 0.7500 0.8333 0.7895
KNN 0.7333 0.8500 0.7727 0.8095
Ensemble 0.8000 0.9000 0.8182 0.8571
Kernel SVM 0.6667 0.9500 0.6786 0.7917

2) ICA

Tree 0.7667 0.9000 0.7826 0.8372
LD 0.4667 0.4500 0.6429 0.5294
LR 0.7000 0.6000 0.9231 0.7273
NB 0.7333 0.8500 0.7727 0.8095
SVM 0.7000 0.8000 0.7619 0.7805
KNN 0.7000 0.9000 0.7200 0.8000
Ensemble 0.7667 0.9500 0.7600 0.8444
Kernel SVM 0.7000 1.0000 0.6897 0.8163

3) CCA

Tree 0.9667 1.0000 0.9524 0.9756
LD 0.6667 0.6000 0.8571 0.7059
LR 0.6333 0.6000 0.8000 0.6857
NB 0.8000 0.9500 0.7917 0.8636
SVM 0.9000 0.9500 0.9048 0.9268
KNN 0.9000 0.8500 1.0000 0.9189
Ensemble 0.9333 0.9500 0.9500 0.9500
Kernel SVM 0.9667 1.0000 0.9524 0.9756

Model accuracy is compared for all three experiments in
Fig. 3 where all the models show a higher accuracy when
CCA is used as a preprocessing method. When comparing
ICA and filtering as preprocessing methods, both have
similar results across all models except for the decision
tree.

Fig. 3: Comparison of model accuracy for three
experiments

VI. CONCLUSION

In conclusion, this study measured the impact of EEG
signal preprocessing methods on machine learning models
for classifying subjects diagnosed with affective disorders
and healthy subjects. Three preprocessing methods are
compared: filtering, canonical correlation analysis, and
independent component analysis. To evaluate the listed
preprocessing methods, three experiments are performed
with the same pipeline: data acquisition, preprocessing,
feature extraction, and classification with machine learning
models. The only difference in each experiment was the
preprocessing step. The goal of this study was not to find

the best features or a subset of features and optimize hy-
perparameters of ML models because varying these steps
would not allow interpreting the impact of preprocessing
steps.

For the chosen EEG dataset, of the three chosen pre-
processing methods, CCA had the best results with all
ML models except with logistic regression. When visually
comparing signals, it is noticeable that CCA success-
fully removed both artifacts caused by eye movement
or blinks, as well as drifts and muscle artifacts. On the
other hand, ICA showed similar results to filtering, even
though better results were expected due to ICA using a
pre-trained model ICLabel for classifying and removing
artifacts from EEG signals. ICA could be further improved
by using manual inspection and removal of components,
which would be time-consuming when working with large
datasets containing hundreds of recordings. On the other
hand, no such model for labeling CCA components exists
and could help further choose more precise components
for removal.

When recording EEGs, the raw signal contains artifacts
coming from various sources, from the subject itself and
the environment. The obtained results show that prepro-
cessing is a key step in preparing EEG recordings for
future analysis. The main difference between all used
preprocessing methods is the balance between keeping the
target signal intact and, at the same time, removing all
artifacts. Choosing different preprocessing steps can sig-
nificantly vary the accuracy of predictions in ML models.
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